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Motivation
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» Discovery marks the beginning of M= Erelvinary

Individual Results 5

the experimental era of Higgs V H> bb ariv:1310.3687 i

: p(mH=125.0 GeV)=1.0x0.5 5

physics )

h(m 1250 Gy = 0781 0.27 ——

' ' ' H— vy HIG-13-001

» Determination of the properties | umzizs0cen=078:027 e

of the Higgs will be a challenge Heo WW stz ——

for years to come y

’ oz emes | e

0”1IO.ISHH;II”1.15H”2

' 1l Best fit o/
* Requires precision measurements sl Sl CoN
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Amazing progress from the experiments

3




State of QCD perturbation theory

e daﬁldaigpdf(an)pdf(ﬂfzm

Impressive repository of calculations available at NLO (MCFM)
Tree level and NLO calculations almost completely automated

At NNLO only a few processes are done: Higgs production, Drell-Yan, top pair
production,...

Calculations are specific for each process
More general methods are slowly being pushed to NNLO (unitarity, ...)

First proof of principle calculations are being done
4



State of QCD perturbation theory

pp - (2,77)+X
80_']""]"'Ir""l""l'_—
* Perturbation theory can be tedious | £ | i
§ “r [ Anastasiou, -
N§ - Dixon, ;
& TR i Melnikov, =y B
But 1t Is necessary | betricllo] A fke
*  We have seen significant corrections from the classical level to NLO

IN Many processes

And even remarkable corrections from NLO to NNLO for

example in Higgs production through gluon fusions

Loop calculations are important for phenomenological predictions
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State of QCD perturbation theory

Loop amplitudes are a probe Into the inner workings of QFT
Shed light on the structure of gauge theories at higher loop orders

Find and test conjectures about all-loop structure of gauge theories
(planar N=4 Super Yang-Mills)

Formal interest in loop calculations
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L oop amplitudes

Practical and formal interest in loop amplitudes

Loop computations are notoriously difficult
Explosive growth of the number of Feynman diagrams
The integrals are in general UV & IR divergent
Computing the integrals Is In general extremely difficult

| will mostly talk about the actual integrals in this talk
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L oop amplitudes

Why are loop integrals difficult to compute!?
Loop integrals cannot be described by elementary functions
A whole zoo of transcendental functions has been observed in calculations of loop integrals

Classical polylogarithms

Harmonic polylogarithms (HPLs)

Cyclotomic harmonic polylogarithms

2d harmonic polylogarithms

These are all special cases of the multiple polylogarithms

Elliptic functions (not in this talk)
What are the properties of these functions?

How can we perform integrals involving these functions?
8
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The gluon fusion cross section

The dominant Higgs production mode at the LHC Is gluon fusion

TTTO
Loop-Induced process > -----------

Q QQQJ

The Higgs boson is light compared to the top quark

The top loop can be Integrated out — effective theory ZZK@

The tree-level coupling of the gluons to the Higgs Is described by a
dimension five operator

1 a | 74
L = Lacp — 5-C1HG;, Gl
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The gluon fusion cross section

Operators with higher dimension can be included in the
computation

This leads to a systematic expansion of the gluon fusion cross
section In the top mass

Sub-leading corrections In the top-mass are known at NNLO

[Harlander, Ozeren; Pak, Rogal, Steinhauser; Ball, Del Duca,
Marzani, Forte, Vicini; Harlander, Mantler, Marzani, Ozeren]

In the following | will only talk about the leading term in the
effective theory



The gluon fusion cross section

The gluon fusion cross-section In perturbation theory is
1
-
O'(pp = H—I—X) — TZ/ dZEZ](Z)(s'w (—)
ij VT

Z

VWe compute the inclusive partonic cross section

The partonic cross section is a function of

m? m3

h i
T it =)
S EC’TTL

In perturbation theory the partonic cross section can be expanded
B 6 °(2) + 0,670 (2) + a26NO(2) 4 o26NLO(Z) S
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The gluon fusion cross section

fixed order only

» The lower orders of the gluon fusion

cross section have been computed

» NLO (full theory)

[Dawson; Djouadi, Spira, Zerwas]

NNLO (effective theory and sub-leading top-mass corrections)

[Harlander, Kilgore; Anastasiou, Melnikov; Ravindran, Smith, van Neerven]

- We want to push the calculation one order higher

Uncharted territory in perturbation theory

Many conceptual and practical challenges

13



The gluon fusion cross section

Diagrammatic contributions at NLO

@ii }m

virtual correction real emission

Purely diagrammatic contributions are divergent
Need two more pieces in the calculation
UV renormalization to cancel UV divergences

PDF counter terms to cancel initial state collinear (IR) divergences
14



The gluon fusion cross section

» Diagrammatic contributions at NNLO

double virtual real virtual




The gluon fusion cross section

»  Diagrammatic contributions at NNNLO

triple virtual double virtual real

real virtual squared
()
o‘foooooooooooooooo?.b

%
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[ he triple virtual

* The triple virtual is directly related to the three loop QCD form
factor

« The QCD form factor is well known

+ at one loop

e gt two |OOPS [Gonsalves; Kramer, Lampe; Gehrmann, Huber, Maitre]

o [Baikov, Chetyrkin, Smirnov, Smirnov, Steinhauser;
at th = |OOPS Gehrmann, Glover, Huber, Ikizlerli, Studerus]

* The pure loop contributions are not a problem in the calculation

1/



Unrtarity

Optical theorem:

X f R

Discontinuities of loop Integrals are phase space integrals

Discontinuities of loop Integrals are given by Cutkosky's rule:

1
D2 — m? + ie

» 0 (p* —m?) = 0(p” —m*)0(p°)



Reverse unrtarity

Optical theorem:

- f e

The optical theorem can be read ‘backwards’

This way, phase space integrals can be expressed as unitarity cuts of loop

mtegrals [ Anastasiou, Melnikov; Anastasiou, Dixon, Melnikov, Petriello]

VWe can compute loop Integrals with cuts instead of phase space integrals

This makes the rich technology developed for loop integrals available
19



IBPs and master integrals

Loop Integrals are In general not independent but related by
Integration-by-parts identities (IBPs)

The IBPs form a system of equations for a given class of loop
integrals

The system can be solved algorithmically expressing all integrals
through a small basis set of integrals (master integrals)

OO ELERETTRTEPEPTIP Z ——————

§ 1
: 7 l

(€= 1)(2e — 1)(3¢ — 2)(3€ — 1)(6¢ — 5)(6¢ — 1)>@<i
e*(e + 1)(2¢ — 3) .
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IBPs and differential equations

Having access to IBP technology allows us to derive differential
equations for master integrals

The derivative of a master integral w.rt. kinematic invariants can be
expressed as a linear combination of master integrals

Leads to a coupled system of linear differential equations for the

master integrals )

{05 — 3¢ dlog(1 — Z)} M
= ¢ dlog(1 — z) —3e dlog(1 — 5)

2|




Differential equations and boundaries

Integrating the differential equations for the master integrals yields

oeneral solutions

These general solutions need to be fixed using boundary conditions

Natural boundary condition for the problem at
z2=0<=35=m;
This corresponds to the soft or threshold limrit of the process

)



| he threshold expansion

[t I1s possible to systematically expand the cross section at threshold
This yelds

boundary condrtions for the differential equation

the soft-virtual approximation for the cross-section

Around threshold the cross section can be approximated by a
power series

b = G == G A= o == OB

23



The soft-virtual approximation

VWe computed the soft-virtual term

A\ A A\ A —_— 2
o :+ Go + 261 + O(Z)
t receives contributions from the threshold divergence atz ~ ()

The poles in epsilon cancel with the poles from the virtual contributions to leave
behind delta functions and plus distributions

_—1+ne 0(2) | {1 log(z

- i ne §]++n€[ Z )}++O(€)2

The soft-virtual term includes:
The full three-loop corrections to gluon fusion

Contributions from the real emission of soft gluons at up to two loops

Only gluon inrtiated channels contribute
24



The soft-virtual approximation

Expansion by regions provides a consistent way to compute the soft
contribution to the cross section:

* Expand the integrals in soft momenta
»  The momenta of final state partons are soft

» Loop momenta are erther soft or hard compared to the final
state parton momenta

* [he expanded objects can be Interpreted as Feynman integrals
themselves

Expansion reduces the complexity of the calculation
* Less master integrals

* Simpler master integrals
25



The soft-virtual approximation

* All required integrals can be computed analytically

SR i ree_|oop integra|5 [Baikov, Chetyrkin, Smirnov, Smirnov, Steinhauser;
Gehrmann, Glover, Huber, Ikizlerli, Studerus]
* 3 double-virtual real integrals [Duhr, Gehrmann; Li, Zhu]

* / real-virtual SC uared integrals [Anastasiou, Duhr, FD, Herzog, Mistlberger; Kilgore]

[Anastasiou, Duhr, FD, Herzog, Mistlberger;

* |0 double-real virtual integrals Bi. o orh il Sehubi

. 8 ‘t|"|p|e r‘ea| integrals [Anastasiou, Duhr, FD, Mistlberger]
+ Additionally
» three-loop splitting functions O e
e three- OOp b eta fU ﬂCti ons [ Tarasov, Vladimirov, Zharkov; Larin, Vermaseren]
, , [Chetyrkin, Kniehl, Steinhauser; Schroder,
* three-loop Wilson coefficient Steinhauser; Chetyrkin, Kuhn, Sturm]
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['he master integrals
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[ he integrals

*  We want to compute all the integrals analytically

» bvery integral is individually divergent and gives rise to up to six poles In
dimensional regularization

»  Many integrals are trivial to compute:
1 : 1
B ['(4 — 4¢)T'(2 — 3¢)
(1 —26)2T'(4 — 66)T(1 — €)

IR 400
== T (24 — 6¢2)e + (—28C2 — 4263 + —> €’ + (—144¢; — 1963

3 3
25000 & 4
—195¢4 + — g5 (25235 — 800¢, — 1008(3 — 910, — 1302¢s + 4576) €

9219
2

e (882<;§ 1+ 1176¢5C3 — 5600(3 — 4640(5 — 4680(4 — 6076(s —

(e + 8192()) e e
e



[ he integrals

» Other integrals not so much

I (O I (BRI {19 ()4 T, 2(6)}

. 2 T'(5— 66)[(2 — €)
2/

00 1
Iyl = / dty dts / dzy dzg dzst3 4 (1 +11) 85
0 0

Y

x 27 (1 — z1)° 4 w1 = T (1 + toxs) 3¢ (1 + tozaxs)©

3e—3
X (tltgxlxgazg il t%xgaﬁg + t1tox12x2 + t1toxs + toxoxrs + 1o + 11 + 1) ;

)

o0 1
Tg2(€) = /0 dty dito /0 dxy dzo dzsts % (1 + Gl Rl Fos

x 21 (1 — 21)* 2l (1 — 20) 25 (1 + taza)™ ¢ (1 + tamams)©

g
X (tlt%.:zzlxgazg + t%:clxgazg + tox1 + t1tax122 + t1taxs + tox1 X223 + 11 + $1) )
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[ he integrals

Why are some of these Iterated integrals so complicated?

In the previous example we have 5 Integrations

. ) dx

| st integration / —— — log

2nd integration / =2 Jog (f(x2)) — Lis
. . d

3rd integration / —2Liy (f(23)) — Lis

With each integration step we obtain more and more complicated

Li, (2) = /O O )

t

Depending on the problem, we find even more complex functions than

functions

the classical polylogarithms
31



Multiple polylogarithms

_arge classes of loop integrals can be expressed In terms of multiple
holylogarithms

R
G(al,...,an;z):/ G(asz,...,an;t) ‘ Il (% / —Lln 1 (
0

t—a1

The classical polylogarithms, HPLs, 2dHPLs etc are special cases of
the multiple polylogarithms

The classical polylogarithms satisty various complicated functional

identities 2

—Liy(z) —log(z) log(1 — z) = Liz(1 — 2) 7;3

For the multiple polylogarithms these identities are In general not
known

B



Multiple polylogarithms

Not knowing the functional identities Is a problem

Even If the physics of a result is very simple, the analytical expression
might be very complicated

The simplicity of the answer might be hidden behind the various
functional equations

Famous example:

The two-loop hexagon remainder function iIn N=4 SYM as
computed by Del Duca, Duhr and Smirnov i1s a | / page
expression

After Goncharov, Spradlin,Vergu and Volovich simplified it using

functional 1dentities it can be written in 4 lines
BE



Multiple polylogarithms

Not knowing the functional identities Is a problem
Too complicated results are not just a formal or aesthetic problem
Without using functional identities there might be huge cancellation

between divergent sub-pieces of the result even though the
complete result Is finite

Too complicated results are not useable for phenomenology

because numerical Implementations are not feasible

Need functional identities to express result in a simple basis

5



Multiple polylogarithms

Not knowing the functional identities Is a problem

The integrand might not be In the right form to perform the
integration

Result can only be obtained If functional identities between

holylogarithms are known

S
G(al,...,an;z):/ Giazs o)
0

t—a1

35



Number theory

Multiple polylogarithms are a very active field of research in pure
mathematics

Mathematicians have discovered algebraic structures that underly
the polylogarithms

When we usually think of functional identities we think of
complicated functional equations that are obtained by performing

intricate variable transformations of the integral representations

’7T2

—Lis(z) — log(z) log(1 — 2) = Lix(1 — 2) 7

36



Number theory

Mathematicians have conjectured that all functional equations
between polylogarithms follow from a simple algebraic structure

All functional equations between polylogarithms can be obtained
from pure combinatorics

One need not even know the integral to obtain the functional
identrties

The algebraic structure that governs the polylogarithms is called a
Hopf algebra

E37/



Hopt algebras

What is 2 Hopf algebra’

't i1s an algebra: A vector space with an operation that allows us to
combine two elements into one (multiplication)

[t 1s also a coalgebra: A vector space with an operation that
allows us to break an element into two elements (comultiplication)

Disclaimer: The following explanation is very handwaving and omits
many mathematical detalls

38



Hopt algebras

The algebra part of the Hopf algebra manifests rtself as the shuffle
algebra of the polylogarithms

Shuffle product: Takes two words and intersperses them in all possible ways
while keeping the ordering of the letters of each word among themselves

ab L cd= abcd + acbd + acdb + cabd + cadb + adab

Analogy: Riffle shuffling two
stacks of cards. ﬁ

log(z)log(1l — x)
= —G(0,1,z) — G(1,0, z)

55



Hopt algebras

The comultiplication of the Hopf algebra for polylogarithms is called
the coproduct [Dun]

[t splits 2 word In all possible ordered ways

A(abed) = abed ® 1+ abc @ d + ab ® cd + a ® bed + 1 ® abed

VWe can rterate this splitting until we have broken the word into
tensor products of single letters

40



-unctional equations

The coproduct can be applied to polylogarithms [Duhr]
The word is here the list of indices {a, } of a polylogarithm

Cl@so o0 5 Ums #)

Examples:

A(logx) =1®logz +logxr ® 1

A(Lig(z)) = 1 ® Lig(x) — log(1 — z) ® log(z) + 1 ® Lig(z)

4r]



-unctional equations

The coproduct can be used to derive functional equations for
polylogarithms

The coproduct is applied to the polylogarithm to split it into simpler
pleces

The functional identities for these simpler pieces might be known

I not, the coproduct Is repeatedly applied until only ordinary
logarithms are left

A



Example

: Liz ( (1aiva:) )
Assume you want to calculate: / dx
0 z(1 — )

Using the coproduct it Is possible to derive the following functional
identity:

Lis <(1“_$$)> —G(0,1:2) — G (o, 1_:‘_a;;c>

{3 11 1 = .
G (1, ,x)+G( = a,x)

Now all the integrations are trivial:

G(al,...,an;z):/ G Glas, e
0

t—a1
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[ he integrals

I (O I (BRI {19 ()4 T, 2(6)}

. 2 T'(5— 66)[(2 — €)
2/

o0 1
I9,1(€) = = / dtl dtQ / dil?l dCEQ d:lj‘g t%_% (1 - tl)e_l t%_%
0 0

(1 x1)2_4€ x%_ge (1 —z2) "2z (1 + t2$3)1_3€ (1 + towoxs)"

3e—3
X (tlt%a?lxgafg il t%xgaﬁg + t1tox12x2 + t1toxs + toxoxrs + 1o + 11 + 1) ;

)

o0 1
Tg2(€) = /0 dty dito /0 dxy dzo dzsts % (1 + Gl Rl Fos

x 21 (1 — 21)* 2l (1 — 20) 25 (1 + taza)™ ¢ (1 + tamams)©

3e—3
X (tlt%ajlajgajg + t%ajlngbg A S N Ry B, S A 5 dEE, J= L =F 331) :
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Number theory

Number theory helps us here
The integral can be done one variable at a time

VWe use the coproduct to derive the needed functional identities at
each step

Integrate over one variable at a time using the basic definrtion of the
multiple polylogarithms

G
G(al,...,an;z):/ G(ag,...,an;t)
0

t—a1

Number theory gives us a way to solve the integrals algorithmically

e [Brown]



Number theory

The previous Integral can be computed one step at a time

In the process one finds
functional identities like:

Such identities can not be
found In the literature

Nobody wants to derive
them using integral
transformations

Number theory and the
coproduct give us a simple

tux+ux—u+1 tux+ux—u+1 L ] 1)_
sGuxly 7 zUGwxll ° 0x" )

—G{O,l,l,—l,x)—G(O,1,—l,1,x)+G(0,1,—-l-,—£,x)+G(O 1,—1— = it ) G(O,—-l-,l,l,x)+
t tu t tu tu+u’ tu

1 1 1 1- 1 1 1 1 1
L . x) bl “ ) Oipr—ni= lx) 0,-—,——,—, x)
tu t tu tu+u tu tu tu tu

1 1 1-u 1 1-u 1 1-u -
dodl lw o 1 1w, G( B s )-an-L, -
tu tu tu+u tu tu+u tu fll+u tu+u
1
G(l,O,——,l,x)+G(l,0,————x)+G(10——— ) G(l 10—— x) G(l 1, -- ——x)
tu tu tu+u
1 1 1
G(l——le) 0(1—— - )G(l——llx) G(l——l——x)G(l—— - )
t tu+u’ t tu+u’
1 1 1 1 1 1 1- 1
0{1 e i ) P TI x) e ) G(l,——,O,l,x) G(l,——,O,——,x)+
L tu tu t t tu tu+u tu t
G{l - ) 0(1 -=,1,1, x) 1, -L P i ,;:)-G(l,-i —1—,—1—,x)+G(—l,0,1,1,x)—
tu+u tu+u tu t t t
1 1-u 1 1-u 1 1-u 1-u 1 1 1
G(—_’oyl’_ ,X)—G(—_,O,— ’l’x)+G(—_’0’— yhad ,X)—G(-_,l,l,l,x)+6(—_,1,1,—_,x)+
t tu+u t tu+u t tu+u tu+tu t t t
G(—lvlvlv_ l—u‘x)+G(_1_,l’_L‘l’x)_G(_l‘l’_i’_l_, )—G(_l_vl!—Lv— l_uvx)+G(_lv1!— l_uvl’x)—
t tu+u t tu t tu 1 t tu tutu t tu+u
1 1-u 1-u 1 1 1 1 1 1 1 1-u
G(—_,ly_ e ,x)+G(__,__’lyl,x)—G(-_’__’l’-_’ )_G(__’—_,l’_ ’x)_
t tu+u tu+u t tu t tu t t tu tu+u
1 1 1 1 1 1 1 1 1 1 1-u 1 1 1-u
G{__;__y__’lyx)+G(__’__7__s__1x)+G(__s__,__;_ ,x)_G(__,__!_ 91’x)+
t tu tu t tu tu t t tu tu tutu t tu tu+tu
G{_l’_L’_ l_ua— l_u1x)_0(-l’011,l)x)+G(—L)O’ly—l_ax)+G(—l_1011,- l_u’x)+
t tu tu+tu tu+u tu tu t tu tu+u
1 1 1 1 1 1 1 1- 1 1-
G(—_yo’-_,lyx)_G(—_’o’—_1_‘_’/‘)—0(-_10’—_1— u’x)+G(—_’0’- u’lrx)—
tu tu tu tu t tu tu tu+tu tu tu+u
G(_lyoy_ l_uv— l_u9x)+G(_l_9110v_l’x)+G(_L’191’19-x)_G(_Lvlylv_ l_uvx)_G(_lrlv_l’_l9 )_
tu tu+u tu+u tu t tu tu tu+u tu t t
1 1-u 1 1—u 1-u 1 1 1 1 1-u
G{__vl’_ vlvx)+G(__’lr_ [ ar ,x)_G(__9_—v0’lrx)+G(__’__70v_ 1x)+
tu tu+u tu tu+u tu+tu tu t tu t tu+u
G(_.l.’_l’l,l,x)_a(_l_,_.l_’1,_l,x)_G(__l-’_}_,1,_ l_uyx)_G(_l.y_-l-s_i.,lyx)'*'
tu t tu t t tu t tu+u tu t tu
1 1 1 1 1 1 1 1- 1 1 j | 1 1
G(__’—_s__’_-o )+G(__’_—a__’_ uvx)+G(__’__90’lax)_G(__y—_’(),__q )_
tu t tu t tu t tu tu+u tu tu tu tu t

1 1 1-u 1 1 1 1 1-u 1 1 { LR
G{—_’—_,O’— ax)_G(__a—_’ly11X)+G(—_1__’1’— ,x)+G(—_ ol AN Sy )
tu tu tu+u tu tu tu tu tu+u tu’ tu’ ot t
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[ he integrals

* When the smoke clears, one finds:

- 160 1712 1 1

Nl = = - =+ (- 120G +2784) + 5 — 120¢s + 1284 + 31968)
' € (& € €
. x 1

P 4= (2520 G4+ 1284 (5 — 2088 Cy — 216864) 115720 ¢5 - 1920 & Ca
: €

— 26964 (4 — 2088 (3 — 23976 (o + 795744 + 6(82520 C6 + 9600 2

— 168204 C5 — 20544 (o (3 + 43848 (4 — 23976 (3 + 162648 (5 — 2449440)
L Ol

» [hanks to these modern techniques we were able to compute all
integrals analytically

»  We obtain the soft-virtual approximation of the gluon fusion cross
section at N3LO

47
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The soft-virtual cross section at N3LO

_<2_@

1 725 253 8941 8563 297029 5% H8&
+[1—z] o (186C5——C3C2 —C4 Co — )+N1%CA <—C3 )
+

108 324 23328

17 475 2173 31313 1711
Ca ( 324 2+11664)+CACF ("C‘*__C?’__CQ 864)]}

352 152 30569 25
O {CA( -5 G- G+ 648)+N%0A (——42 )
_|_

C3i (%CB‘*‘_@_%)‘FCACF (6C —@)]}
)

log®(1 — 2 5 187 1051 , [ 34 457\ 1 10
—|—_ 1 _+{CA 181C3—|——C2—2—7 + Ng CA _ECQ 54 + — CACF _ﬁNFCA
[log®(1 — 2)] 5 925 164 , 4
e Ca (796G + 57 ) = 57 NrCat op Ni Ca
log*(1 — 2)" 0 110 log®(1 — 2) [ Anastasiou, Duhr, F D, Furlan,
i 9N FCOA— CA T 8C% . Gehrmann, Herzog, Mistlberger]
: 1+ +



The soft-virtual cross section at N3LO

» This result contains the full three-correction and all corrections coming from
the emission of up to three soft gluons

How did we make sure that it Is correct!

VWe observe the extremely intricate cancellation of six poles in dimensional
regularisation

« The plus distribution terms agree with a calculation by Moch and Vogt

- All master integrals were calculated analytically and cross checked
numerically

«  We performed internal independent calculations for all pieces and some

contributions have been calculated and confirmed by other groups as well
50



The soft-virtual cross section at N3LO

T
100 |-

o/pb

--- LO — NLO

NNLO — NNNLO

14 TeV




The soft-virtual cross section at N3LO

+ Caveat: T he soft-virtual term alone is ambiguous

» Formally sub-leading terms could be inflated
6(2)

129(2)_ threshold

o = /d:zzldatgpdf(ml)pdf(afg)[zg(z)]

» One can choose any ¢g(z) as long as lim g(z) = 1

z—1
9(2) 1 2 = 1/z
50_N3LO
= | —2.27% | 8.19% | 30.16% | 7.73%

» More terms in the expansion / an unexpanded result are desirable
5



Outlook

To obtain the full cross section we have to compute unexpanded
master integrals

Thanks to reverse unitarity we are able to derive differential
equations for the master integrals

[85 — 3¢ dlog(1 — Z)] M
_ ¢ diog(1— 7 3¢ dlog(1 — 2) XX

Our calculation of the soft-virtual term provides us with many of
the boundary conditions needed to solve the differential equations

53



Differential equations
[ag — 3¢ dlog(1 — z)} M

= € dlog(1 — 2) —3e dlog(1 — ) e

In recent years there has been a lot of progress in bringing the
differential equations into a simple form  [Gehrmann, Remiddi; Henn]

In this canonical form the differentials can be expressed as dlogs
This makes the Iintegration trivial

Makes the singularity structure of the function obvious
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Differential equations
[ag — 3¢ dlog(1 — z)} M

= € dlog(1 — 2) —3e dlog(1 — ) e

Compare with the definition of the multiple polylogarithms

el
G(al,...,an;z):/ Gllay e
0

t—CLl

Polylogarithms are rterated integrals over dlog forms

Trivial to write down the solution of the differential equation
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Conclusion

We computed the soft-virtual approximation of the gluon fusion
cross section at N3LO

The scale uncertainty Is reduced to 4-5%
Recent advances from number theory were required

These modern techniques allowed us to compute integrals that
would be impossible with conventional methods
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Conclusion

The soft-virtual Is a first approximation of the Higgs cross section at
N3LO

More terms in the expansion or a full calculation are needed for

reliable phenomenology
We expect to have more terms soon
The full result is on the horizon

The results obtained for the Higgs are easlily transferable to other
processes: Drell-Yan, SuSy Higgs, etc
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Thank you for your attention
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1 he soft approximation at NINLO
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| he Isoft approximation at N3LO
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| he soft-virtual cross section at N3LO
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Convergence of the threshold expansion

How good is this approximation?

-o- NLO -=- NNLO

13 TeV - g(z)=1

)

(%

ookl e i e




Convergence of the threshold expansion

How good Is this approximation?
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